Some Unusual Matrix Eigenvalue Problems
نویسنده
چکیده
We survey some unusual eigenvalue problems arising in different applications. We show that all these problems can be cast as problems of estimating quadratic forms. Numerical algorithms based on the well-known Gauss-type quadrature rules and Lanczos process are reviewed for computing these quadratic forms. These algorithms reference the matrix in question only through a matrix-vector product operation. Hence it is well suited for large sparse problems. Some selected numerical examples are presented to illustrate the eeciency of such an approach.
منابع مشابه
Application of Decoupled Scaled Boundary Finite Element Method to Solve Eigenvalue Helmholtz Problems (Research Note)
A novel element with arbitrary domain shape by using decoupled scaled boundary finite element (DSBFEM) is proposed for eigenvalue analysis of 2D vibrating rods with different boundary conditions. Within the proposed element scheme, the mode shapes of vibrating rods with variable boundary conditions are modelled and results are plotted. All possible conditions for the rods ends are incorporated ...
متن کاملOn the nonnegative inverse eigenvalue problem of traditional matrices
In this paper, at first for a given set of real or complex numbers $sigma$ with nonnegative summation, we introduce some special conditions that with them there is no nonnegative tridiagonal matrix in which $sigma$ is its spectrum. In continue we present some conditions for existence such nonnegative tridiagonal matrices.
متن کاملSome results on the symmetric doubly stochastic inverse eigenvalue problem
The symmetric doubly stochastic inverse eigenvalue problem (hereafter SDIEP) is to determine the necessary and sufficient conditions for an $n$-tuple $sigma=(1,lambda_{2},lambda_{3},ldots,lambda_{n})in mathbb{R}^{n}$ with $|lambda_{i}|leq 1,~i=1,2,ldots,n$, to be the spectrum of an $ntimes n$ symmetric doubly stochastic matrix $A$. If there exists an $ntimes n$ symmetric doubly stochastic ...
متن کاملEvolution of the first eigenvalue of buckling problem on Riemannian manifold under Ricci flow
Among the eigenvalue problems of the Laplacian, the biharmonic operator eigenvalue problems are interesting projects because these problems root in physics and geometric analysis. The buckling problem is one of the most important problems in physics, and many studies have been done by the researchers about the solution and the estimate of its eigenvalue. In this paper, first, we obtain the evol...
متن کاملThe Relationship between the Infinite Eigenvalue Assignment for Singular Systems and the Solvability of Polynomial Matrix Equations
Two related problems, namely the problem of the infinite eigenvalue assignment and that of the solvability of polynomial matrix equations are considered. Necessary and sufficient conditions for the existence of solutions to both the problems are established. The relationships between the problems are discussed and some applications from the field of the perfect observer design for singular line...
متن کامل